FUNDAMENTAL TECHNOLOGY DEVELOPMENT FOR SPACE SCIENCE

SEU/Origins Subcommittee Meeting

July 2, 2003

Dr. Chris Moore
Office of Aerospace Technology
(202) 358-4650
cmoore2@hq.nasa.gov

Outline

- Code R Technology Programs
- Addressing Code S Needs
- Sensor Technology
 - Direct detectors and focal planes
 - Cryocoolers
 - Terahertz receivers
- Large Aperture Technology
 - Dual Anamorphic Reflector Telescope (DART)
- Distributed Spacecraft Technology
- Code R NASA Research Announcements

The Aerospace Technology Enterprise Contributes to the NASA Vision and Mission through Technology Development and Transfer

NASA's Vision

Aerospace Technology Enterprise Strategic Themes

Mission & Science Measurement Technology

Strategic Theme Objectives and Programs

Theme Objectives

Mission Risk Analysis

Develop the capability to assess and manage risk in the synthesis of complex systems.

Science Driven Mission Architectures and Technology

Define new system concepts and demonstrate new technologies which enable new science measurements.

Create Knowledge from Scientific Data

Develop break-through information and communication systems to increase our understanding of scientific data and phenomena

Engineering for Complex Systems

Programs

Enabling Concepts & Technologies

Computing, Information & Communications Technology

Program Implementation Strategy

The Big Picture - Where MSM Fits

Annual NASA Investment

Time From Start

Addressing Enterprise Technology Needs

- Code R has established a Technology Executive Board (TEB)
 - Membership Enterprise Technology Representatives
 - Establish joint list of Enterprise technology needs and priorities
 - Provide guidance on program content and direction
 - Ensure technology infusion
 - Integrate/coordinate Code R with Enterprise specific initiatives

Code S

- Sensors and instruments
- Advanced optical systems
- Robotic systems
- High strength-to-weight materials
- Advanced propulsion
- Formation flying
- Extreme environments

Code M

- Large space solar power systems
- High power propulsion
- Modular infrastructures
- Assembly, maintenance, & servicing
- Lighter, more flexible EVA with extended duration

Code Y

- Lasers and lidar
- Large telescopes & antennas
- Frequency agile detectors
- Microwave transmitters & receivers
- High efficiency solar cells
- Miniature guidance & navigation sensors

Code U

- Autonomous environmental monitoring & control
- In-space medical diagnostics
- Spectroscopy for space biology research
- Biomolecular sensors to support crew health & safety
- Lighter, more flexible EVA with extended duration
- In-space manufacturing & fabrication

Enabling Concepts & Technologies Program

Advanced System Concepts

Conceptual studies and systems analysis of revolutionary aerospace system concepts that have the potential to leap well past current plans, or to enable new visions for NASA's strategic plans.

Energetics

Development of advanced power and propulsion technologies to enable lower-cost missions with increased capability, and to extend mission reach.

Advanced Measurement and Detection

Development of miniaturized, highly-integrated, and efficient instruments and sensors to provide increased scientific return.

Revolutionary Spacecraft Systems

Development of revolutionary spacecraft systems and architectures to enable distributed science data collection, explore extreme environments, and lower mission costs.

Large Space Systems

Development of concepts for large, ultra-lightweight space structures and apertures to expand mission capabilities, and enable new visions of the Earth and the Universe.

Space NRAs

Broadly announced peer-reviewed solicitations to capture innovative ideas from external organizations, to leverage high-payoff emerging technologies, and to complement NASA capabilities in critical areas.

Advanced Measurement & Detection Technology Products

High efficiency, tunable laser transmitters for active sensing

High efficiency detectors (IR, visible, UV, X-ray) for focal plane assemblies

Instrument optics

Submillimeter sources, amplifiers, and detectors

Cryocoolers

In situ biological & chemical sensors

Transition Paths for Code R Technology

Code R Technology Directly Inserted into NASA missions

MEMS Micro-shutter Array for James Webb Space Telescope multi-object spectrometer

Zero vibration 20K helium sorption cooler for Planck

Superconducting Transition Edge Sensor array for Constellation-X

Micromesh bolometer arrays for Herschel and Planck

Superconducting mixers and planar multipliers for Herschel, Planck, and SOFIA

CZT Hard X-ray focal planes for Constellation-X

Direct Detectors and Focal Planes

Visible
Science Grade CCDs
CMOS Active Pixel Sensors

CMOS APS "camera on a chip"

MW/LW Infrared
Uncooled IR thermopiles
Quantum dot IR photodetectors

2D Thermopile Array

<u>Ultraviolet</u> GaN Staring Hybrid FPAs Delta-doped SiCCDs

Delta-doped UVCCD

X-ray Transition Edge Calorimeters CZT Staring Hybrid FPAs

TES pixels

Far Infrared Micromesh Bolometer Arrays Superconducting TES and Kinetic Inductance

Superconducting TES bolometer

Kinetic Inductance Detector

Improvement in Cryogenic Technology is CRITICAL to allow advancements in high performance focal planes and RF/THz receivers.

- Cooling power consistent with focal plane or mixer
- Vibrationless methods to reduce microphonic noise
- Ability to reject heat appropriately and mesh with other stages of cooling system

Cryogenic Coolers

20K Pulse Tubes with Advanced Regenerators

20K and 6K Sorption Coolers

4 - 10K Turbo-Brayton

50mK Adiabatic Demagnetization Refrigerators

Terahertz Technologies

Superconducting mixers / sources / amplifiers for THz heterodyne receivers THz detector arrays

MEMS-Based MicroShutter Array

Selected for James Webb Space Telescope Multi-Object Spectrometer instrument.

Participants

Principal Investigator - H. Moseley, NASA/GSFC Task Manager - J. Hein, NASA/GSFC Partners - Naval Research Lab, Applied Physics Lab, JPL, U. of MD, Penn State, VA Tech

Objectives

A transmissive field selector Cell Size: 100mm square Operation Temp. 30-35K Reliability: 10⁶ cycles

Power: 35mW avg. dissipation

Dual Reflector Anamorphic Telescope (DART)

Two cylindrical reflectors are oriented perpendicular to each other with slightly different focal lengths so that both focus at the same point.

System areal density decreases with increasing aperture size.

DART Prototype

Membrane reflectors

1.2 m DART prototype achieved diffraction limited performance at 40 μm (Lockheed Martin / JPL)

Image at DART focal plane

DART Work in Progress

JPL:

- 0.5 m precision testbed with actuators for figure control
- Scale-up of membrane materials (nanolaminate, polymer film)
- Integrated optical/structural model
- Membrane metrology

Lockheed Martin:

- 2m x 4m scaled testbed
- Full aperture optical testing of 1.2 m testbed

Nanolaminate membrane reflector

Distributed Spacecraft Technologies

Precision formation flying dynamics simulations

Equations of motion for spacecraft formations at Lagrange points

Distributed spacecraft testbeds to validate control algorithms

Spacecraft ranging and formation control sensors

Technology Assessments

- The ECT Program uses technology assessments to identify and prioritize high-payoff technologies, to establish system-level performance goals, and to guide program investment decisions.
- Performing a pilot technology assessment study on Large Telescope Systems for Code S. Initial results expected in August.
- Pilot study involves 25 astronomers to define the scientific measurement capabilities for three aperture sizes:
 - 10 m telescope
 - 35 m telescope
 - 100 m telescope

Large Telescope System Technologies:

- Modular structures
- Robotic assembly
- Lightweight optics
- Active figure control
- Thermal management
- Detectors
- Formation Flying

NASA Research Announcements

- Code R will issue a \$39M NASA Research Announcement (NRA) for Mission and Science Measurement Technology on August 4.
- The NRA will include three main technology areas in response to Enterprise priorities:
 - Advanced Measurement & Detection
 - > focal planes, cryocoolers
 - Large Apertures
 - > lightweight optics, wavefront control, deployable antennas
 - Low Power Electronics
- Draft NRA is posted the web for public comment at: http://research.hq.nasa.gov/
- Bidders Conference will be held at University of Maryland Conference Center on July 15.
- NRA is open to all categories of organizations, including industry, universities, non-profit institutions, NASA Centers, and other government agencies.
- Typical funding awards are \$300K \$500K per year for 3 years.

Summary

The Code R Mission and Science Measurement Theme develops high-payoff crosscutting technologies to meet the future mission needs of the NASA Enterprises.

The Code R Mission and Science Measurement Theme is working closely with the Enterprises to define program content, to transition technology products, and to assess technology requirements.